これは、Kerasのサンプルコードです。英語の文を仏語に翻訳します。
英語と仏語の文のペアを用いて、モデルをトレーニングします。
Is she Japanese? Est-elle japonaise ? Is she a doctor? Est-elle médecin ?
私のMac miniで1時間ほどすると、このような結果が得られます。
Input sentence: Be nice. Decoded sentence: Soyez gentil ! - Input sentence: Drop it! Decoded sentence: Laissez tomber ! - Input sentence: Get out! Decoded sentence: Sortez !
ここまでは、良いですね。しかしながら、私たちが本当に知りたいのは、以下のようなトレーニング系列を与えた時に何が起きるかです。
a, .- aa, .- .- aal, .- .- .-.. aalii, .- .- .-.. .. .. (many lines deleted) antidivorce, .- -. - .. -.. .. ...- --- .-. -.-. . antidogmatic, .- -. - .. -.. --- --. -- .- - .. -.-. antidomestic, .- -. - .. -.. --- -- . ... - .. -.-. antidominican, .- -. - .. -.. --- -- .. -. .. -.-. .- -.
しばらく時間が経過したのち(トレーニング系列のサイズによりますが)、このようになります。
Number of samples: 10000 Number of unique input tokens: 26 Number of unique output tokens: 5 Max sequence length for inputs: 23 Max sequence length for outputs: 95 Train on 8000 samples, validate on 2000 samples Epoch 1/100 - Input sentence: abbacy Decoded sentence: .- -... -... .- -.-. -.-- - Input sentence: abbadide Decoded sentence: .- -... -... .- -.. .. -.. . - Input sentence: abbas Decoded sentence: .- -... -... .- ... Process finished with exit code 0
この特定の例では、トレーニング系列に含まれるサンプルをデコードしていることに留意してください。
from keras.models import Model from keras.layers import Input, LSTM, Dense import numpy as np batch_size = 64 # Batch size for training. epochs = 100 # Number of epochs to train for. latent_dim = 256 # Latent dimensionality of the encoding space. num_samples = 10000 # Number of samples to train on. # num_samples = 5 data_path = 'seq2seq.txt' data_path = 'words_morse.txt' # Vectorize the data. input_texts = [] target_texts = [] input_characters = set() target_characters = set() with open(data_path, 'r', encoding='utf-8') as f: lines = f.read().split('\n') for line in lines[: min(num_samples, len(lines) - 1)]: # input_text, target_text = line.split('\t') input_text, target_text = line.split(', ') print("input_text [", input_text, "]", sep="") print("target_text [", target_text, "]", sep="") # We use "tab" as the "start sequence" character # for the targets, and "\n" as "end sequence" character. target_text = '\t' + target_text + '\n' input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32') decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. for t, char in enumerate(target_text): # decoder_target_data is ahead of decoder_input_data by one timestep decoder_input_data[i, t, target_token_index[char]] = 1. if t > 0: # decoder_target_data will be ahead by one timestep # and will not include the start character. decoder_target_data[i, t - 1, target_token_index[char]] = 1. # Define an input sequence and process it. encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None, num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # Run training model.compile(optimizer='rmsprop', loss='categorical_crossentropy') model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2) # Save model model.save('s2s.h5') # Next: inference mode (sampling). # Here's the drill: # 1) encode input and retrieve initial decoder state # 2) run one step of decoder with this initial state # and a "start of sequence" token as target. # Output will be the next target token # 3) Repeat with the current target token and current states # Define sampling models encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) # Reverse-lookup token index to decode sequences back to # something readable. reverse_input_char_index = dict( (i, char) for char, i in input_token_index.items()) reverse_target_char_index = dict( (i, char) for char, i in target_token_index.items()) def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index['\t']] = 1. # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # Update states states_value = [h, c] return decoded_sentence def main(): for seq_index in range(100): # Take one sequence (part of the training set) # for trying out decoding. input_seq = encoder_input_data[seq_index: seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', input_texts[seq_index]) print('Decoded sentence:', decoded_sentence) main()