もし、あなたがZ(DUT)だけでなく、あなたのアンテナの放射インピーダンスも知りたければ、あなたは、ケーブルの長さと短縮率に応じて、スミスチャート上で負荷の方向へ移動(反時計回りの回転)しなければなりません。
この図では、青色の点がZ(DUT)を、緑色のそれが放射インピーダンスを示しています。
freq1=7.02687 MHz, freq2=7.02978 MHz amp(v2/v1)=0.778415, phase(v2/v1)=-0.53185 rad v1=(1,0i), v2=(0.670893,-0.394757i), v3=(1.32911,0.394757i) z=(0.382788,-0.410701i), z50=(19.1394,-20.535i) gamma=(-0.329107,-0.394757i), abs=0.51395, arg=-129.818 deg vswr=3.1148 cable_length=20 m, velocity_factor=0.67, phase_toward_load=143 deg
// file name = mytest46.cc { ifstream finput("owondata.txt"); Int_t iskip=8; std::string s; for(Int_t i=0;i<iskip;i++) { getline(finput, s); } const Int_t icount_max=8192; Int_t icount=0; Double_t dummy, data1[icount_max], data2[icount_max], data3[icount_max]; while(icount < icount_max) { finput >> data1[icount] >> dummy >> data2[icount] >> data3[icount]; if(finput.eof()) break; icount++; } TCanvas *c1 = new TCanvas("c1","Test",0,0,800,600); TGraph *g = new TGraph(icount, data1, data2); g->SetMarkerStyle( 20 ); g->SetMarkerSize( 0.5 ); g->Draw("AP"); TF1 *f1 = new TF1("f1", "[0]*sin([1]*x+[2])-[3]"); f1->SetParameter(0, 2000.0); f1->SetParameter(1, 0.022); f1->SetParameter(2, 0.0); f1->SetParameter(3, 0.0); f1->SetLineColor(kRed); g->Fit(f1); TGraph *h = new TGraph(icount, data1, data3); h->SetMarkerStyle( 24 ); h->SetMarkerSize( 0.5 ); h->Draw("P"); TF1 *f2 = new TF1("f2", "[0]*sin([1]*x+[2])-[3]"); f2->SetParameter(0, 2000.0); f2->SetParameter(1, 0.022); f2->SetParameter(2, 0.0); f2->SetParameter(3, 0.0); f2->SetLineColor(kYellow); h->Fit(f2); Double_t freq1, freq2; const Double_t fsample = 2000.0; // MHz (interpolated) freq1 = fsample / ( 2.0*TMath::Pi() / f1->GetParameter(1) ); freq2 = fsample / ( 2.0*TMath::Pi() / f2->GetParameter(1) ); std::cout << "freq1=" << freq1 << " MHz, freq2=" << freq2 << " MHz" << std::endl; Double_t amp, phase; amp = f2->GetParameter(0) / f1->GetParameter(0); phase = f2->GetParameter(2) - f1->GetParameter(2); std::cout << "amp(v2/v1)=" << amp << ", phase(v2/v1)=" << phase << " rad" << std::endl; TComplex v1, v2, v3, Z, z50; v1 = TComplex(1.0, 0.0); v2 = TComplex( amp*TMath::Cos(phase), amp*TMath::Sin(phase) ); v3 = 2.0*v1 - v2; z = v2/v3; z50 = 50.0*z; std::cout << "v1=" << v1 << ", v2=" << v2 << ", v3=" << v3 << std::endl; std::cout << "z=" << z << ", z50=" << z50 << std::endl; TComplex gg; Double_t gg_rho, gg_theta, vswr; gg = (z-1.0)/(z+1.0); vswr = (1.0+TComplex::Abs(gg)) / (1.0-TComplex::Abs(gg)); std::cout << "gamma=" << gg << ", abs=" << gg.Rho() << ", arg=" << gg.Theta()*360.0/(2.0*TMath::Pi()) << " deg" << std::endl; std::cout << "vswr=" << vswr << std::endl; TCanvas * CPol = new TCanvas("CPol", "Test", 900, 0, 600, 600); const Int_t ncircle = 360; Double_t radius[ncircle]; Double_t theta [ncircle]; for (Int_t i=0; i<ncircle; i++) { radius[i] = gg.Rho(); theta [i] = TMath::Pi()*2.0*(Double_t)i/(Double_t)(ncircle-1); } Double_t radius_r[ncircle]; Double_t theta_r [ncircle]; Double_t r_center = z.Re() / (z.Re()+1.0); Double_t r_radius = 1.0 / (z.Re()+1.0); for (Int_t i=0; i<ncircle; i++) { Double_t th = TMath::Pi()*2.0*(Double_t)i/(Double_t)(ncircle-1); Double_t re = r_center + r_radius*TMath::Cos(th); Double_t im = r_radius*TMath::Sin(th); TComplex ww = TComplex(re, im); radius_r[i] = ww.Rho (); theta_r [i] = ww.Theta(); } Double_t radius_x[ncircle]; Double_t theta_x [ncircle]; TComplex x_center = TComplex(1.0, 1.0/z.Im()); Double_t x_radius = 1.0/ z.Im(); for (Int_t i=0; i<ncircle; i++) { Double_t th = TMath::Pi()*2.0*(Double_t)i/(Double_t)(ncircle-1); Double_t re = x_center.Re() + x_radius*TMath::Cos(th); Double_t im = x_center.Im() + x_radius*TMath::Sin(th); TComplex ww = TComplex(re, im); radius_x[i] = ww.Rho (); theta_x [i] = ww.Theta(); } TGraphPolar * grP1 = new TGraphPolar(ncircle, theta, radius); grP1->SetTitle("Smith Chart"); grP1->SetMarkerStyle(20); grP1->SetMarkerSize(2.0); grP1->SetMarkerColor(4); grP1->SetLineColor(2); grP1->SetLineWidth(3); grP1->Draw("C"); CPol->Update(); grP1->GetPolargram()->SetToRadian(); grP1->GetPolargram()->SetRangeRadial(0,1); TGraphPolar * grP2 = new TGraphPolar(ncircle, theta_r, radius_r); grP2->SetMarkerStyle(20); grP2->SetMarkerSize(2.0); grP2->SetMarkerColor(4); grP2->SetLineColor(9); grP2->SetLineWidth(3); grP2->Draw("C"); TGraphPolar * grP3 = new TGraphPolar(ncircle, theta_x, radius_x); grP3->SetMarkerStyle(20); grP3->SetMarkerSize(2.0); grP3->SetMarkerColor(4); grP3->SetLineColor(6); grP3->SetLineWidth(3); grP3->Draw("C"); TMarker *m0 = new TMarker(gg.Re(), gg.Im(), 20); m0->SetMarkerSize(2.0); m0->SetMarkerColor(4); m0->Draw(); Double_t freq = (freq1+freq2)/2.0; // MHz Double_t cable_length = 20.0; // meter Double_t velocity_factor = 0.67; Double_t wave_length = velocity_factor * (300.0 / freq); Double_t phase_toward_load = 2.0 * 2.0 * TMath::Pi() * (cable_length / wave_length); std::cout << "cable_length=" << cable_length << " m, velocity_factor=" << velocity_factor << ", phase_toward_load=" << (Int_t) ( phase_toward_load * 360.0 / (2.0*TMath::Pi()) ) % 360 << " deg" << std::endl; TComplex gg_toward_load = gg * TComplex::Exp(TComplex(0.0, phase_toward_load)); TMarker *m1 = new TMarker(gg_toward_load.Re(), gg_toward_load.Im(), 20); m1->SetMarkerSize(2.0); m1->SetMarkerColor(8); m1->Draw(); }